利用W形空穴阻挡层降低AlGaN基深紫外激光二极管的空穴泄露
作者:文阅期刊网 来源:文阅编辑中心 日期:2022-08-26 09:03人气:
摘 要:本文设计了V形和W形的空穴阻挡层(HBL)结构,改善空穴在AlGaN基深紫外激光二极管(DUV-LD)n型区的泄露问题.使用Crosslight软件,将参考型矩形、V形和W形三种空穴阻挡层结构进行仿真研究,分别比较了三种不同结构的DUV-LD能带、n区空穴浓度、辐射复合率、电光转换效率、有源区载流子浓度等特性,结果表明,具有W形空穴阻挡层的DUV-LD拥有更高的空穴有效势垒高度、更高的辐射复合率、更低的空穴泄露以及更好的斜率效率,可以有效降低深紫外激光二极管在n型区的空穴泄露,提升其光学和电学性能.
关键词: AIGaN; 深紫外激光二极管;空穴阻挡层;空穴泄露;
Reduction of hole leakage in AlGaN-based deep ultraviolet laser diodes by using a W-
shaped hole blocking layer
JIAL-Ya ZHANG Peng-Fei ZHANG Ao-Xiang WANG Fang
LIU Jun-Jie LIU Yu-Huai
National Center for International Joint Research of Electronic Materials and Systems, International
Joint-Laboratory of Electronic Materials and Systems of Henan Province, School of Information
Engineering, Zhengzhou University Research Institute of Sensors, Zhengzhou University
Research Institute of Industrial Technology Co.Ltd., Zhengzhou University Zhengzhou Way Do
Electronics Co.Ltd.
Abstract:
In this paper, V-shaped and W-shaped hole blocking layer(HBL) structures are designed to reduce the hole leakage into the n-type region of AlGaN-based deep ultraviolet laser diodes(DUV-LDs). DUV-LDs with reference rectangular, V-shaped and W-shaped hole-blocking layer structures are simulated by Crosslight software. Numerical research on the energy band, n-region hole concentration, radiative recombination rate, electro-optical conversion efficiency, output power, carrier concentration in the active region and other characteristics of the three different structures, are conducted respectively. The results show that DUV-LD with a W-shaped hole blocking layer has higher hole effective barrier height, higher radiative recombination rate, lower hole leakage and better slope efficiency, which can effectively reduce the hole leakage in the n-type region of the deep ultraviolet laser diode, and improve its optical and electrical performance.
Keyword:
AlGaN; Deep ultraviolet laser diode; Hole blocking layer; Hole leakage;
1 引 言
深紫外激光二极管(DUV-LDs)具有体积小、重量轻、结构简单、易集成、可靠性高等优点,在无线通信、化学分析、医疗仪器、生物试剂检测、杀菌消毒、水净化以及高密度信息存储等[1,2,3,4]领域有广阔的应用前景. Ⅲ族氮化物半导体如:GaN、InGaN和AlGaN,这些氮化物通常具有高能量的带隙[5]. 激光二极管的激光波长由有源区材料的禁带宽度决定,其中AlGaN半导体材料具有较大的禁带宽度,通过调节Al组分含量可以实现禁带宽度从3.42 eV到6.2 eV的可调控范围[6],其激光二极管的发光波长可以覆盖从紫外(UV)到深紫外(DUV)波段. AlGaN半导体材料具有高导热性、高电子饱和率、高击穿电压、低介电常数等许多较好的性能,因此,它成为激光二极管、发光二极管等器件中不可替代的半导体材料[6],相比于其他材料,AlGaN基DUV-LD使用寿命更长、更环保.
然而,AlGaN材料本身有非常强的极化效应[7],且由于晶格失配[8],高位错密度导致空穴注入效率低、电子泄露[9,10]、空穴泄露[11]等问题一直阻碍AlGaN基深紫外激光二极管的发展. 为了解决上述问题,研究者们做了大量的研究,比如采用高Al组分不同结构的电子阻挡层(EBL)减少电子泄露[12,13],获得在多量子阱内高载流子浓度;设计多种量子阱结构[14,15]提高辐射复合速率;添加空穴注入层提高空穴注入效率[16];提出许多新颖的Al组分渐变的层设计,优化器件性能[17]. 还有研究者在DUV-LD中提出了多量子势垒双阻挡层[18]结构,基于传统的单一EBL结构,又引入一层HBL,仿真结果证明空穴阻挡层的应用能很好地减少空穴泄漏. 然而加入的空穴阻挡层也产生了阻碍电子注入的势垒高度,并且多量子势垒结构的设计降低了价带对于空穴的势垒高度[19],这也会导致空穴溢出,进而降低了量子阱内的辐射复合率,影响器件的工作性能. 因此本文在矩形HBL AlGaN基DUV-LD的基础上,提出V形和W形空穴阻挡层结构,降低空穴在n型区的泄露,同时减少HBL对电子注入的影响,提高载流子在有源区的复合速率[20],改善深紫外激光二极管的工作性能.
通过对矩形、V形以及W 形三种不同结构空穴阻挡层DUV-LD的仿真研究对比,发现W形空穴阻挡层能够有效的提高空穴有效势垒高度,降低电子有效势垒高度,在增强了空穴阻挡的同时,也加强了电子的注入,更好的将电子和空穴限制在有源区内,明显提升了辐射复合速率,减少了空穴在n型区的泄露,对器件性能优化效果显著.
2 仿真模型与参数
本文采用14 nm厚度的空穴阻挡层. 如图1(a)所示为激光二极管的结构示意图,从下到上,依次是n型区、有源区和p型区. n型区由0.1 μm的n型Al0.75Ga0.25N接触层、1 μm的n型Al0.75Ga0.25N包覆层、0.11 μm的n型Al0.68Ga0.32N下波导层和14 nm的n型Al0.88Ga0.12N空穴阻挡层构成;有源区为两个3 nm的Al0.68Ga0.32N的量子阱和三个8 nm的Al0.58Ga0.42N的量子势垒交替组成;p型区由14 nm的p型Al0.92Ga0.08N电子阻挡层、70 nm的p型Al0.68Ga0.32N上波导层、0.4 μm的p型Al0.75Ga0.25N包覆层以及0.1 μm的p型Al0.8Ga0.2N接触层构成. 用Si和Mg分别作为n型区和p型区的掺杂材料,掺杂浓度均为5×10-24 m-3. 在该仿真中,环境温度设置为300 K,激光二极管腔长设置为530 μm, 其宽度设置为4 μm, 背景消光系数设置为2400 m-1,镜面折射率设置为30%,由自发极化和压电极化引起的内置界面电荷设置为40%.
以矩形空穴阻挡层的DUV-LD为参考结构A,设计四层V形空穴阻挡层的DUV-LD为结构B、九层W形空穴阻挡层的DUV-LD为结构C,总厚度均为14 nm. 如图1(b)、(c)、(d)分别表示三种不同结构的空穴阻挡层Al组分示意图,图中已表明HBL每层具体厚度及其Al组分变化. 为了更精确的探究不同空穴阻挡层结构对于空穴泄露的改善情况,除空穴阻挡层外,其他层的结构、参数均保持不变.
3 仿真结果与讨论
如图2(a)、(b)、(c)所示,为结构A、结构B以及结构C的能带图和准费米能级图,电子和空穴的有效势垒高度[21]定义为导带和价带边缘与准费米能级之间的能量差. 势垒高度影响载流子迁移的能力,势垒高度越大,证明有源区束缚载流子的能力越强. 结构A、结构B和结构C的空穴阻挡层价带中空穴有效势垒高度分别为277 meV、 384 meV、404 meV,导带中电子有效势垒高度分别为543 meV、250 meV、287 meV. 通过对比三种不同结构电子和空穴的有效势垒高度,发现结构B,V形空穴阻挡层DUV-LD的空穴势垒比结构A提高了107 meV;结构C,W形空穴阻挡层DUV-LD的空穴势垒比结构A提高了127 meV,结构C比结构B具有更高的空穴有效势垒高度. 说明结构C阻挡空穴向n型区域溢出的能力较强. 同时结构B和结构C均大幅度降低了电子有效势垒高度,说明HBL不仅能减少空穴泄露,还能作为电子发射源[6,22],使更多的电子注入到有源区.
为了进一步比较三种结构抑制空穴泄露的能力,我们通过对比DUV-LD n型区的空穴浓度来直观的判断空穴泄露程度. 如图3所示,结构C在n型区的空穴浓度最低,比结构A降低了28.2%,比结构B降低了23%,说明具有W形空穴阻挡层结构的DUV-LD相比于其他两种结构有着更强的空穴约束能力,能够有效的阻挡空穴向n型区溢出.
如图4(a)和(b)所示,有源区内电子和空穴浓度均有所提升,因此激光二极管的受激辐射复合速率也有效提高. 电子和空穴在量子阱中的有效复合即为辐射复合[22],辐射复合率也是描述激光二极管发光性能的一项重要参数. 如图5所示,结构C的辐射复合效率相比于结构A提升了1.8%,结构B相比于结构A提升了0.6%,说明W形空穴阻挡层结构的DUV-LD比V形空穴阻挡层结构的DUV-LD促进了有源区内电子与空穴的复合, 具有更好的辐射复合特性. 进一步分析三种不同结构DUV-LD的电学和光学特性.
图6和图7为三种不同空穴阻挡层结构DUV-LD的P-I和I-V特性曲线图. 结构A、结构B和结构C的阈值流分别为31.57 mA、31.94 mA、31.17 mA,结构C相比结构A降低了1.3%;结构A、结构B和结构C的阈值电压分别为4.85 V、4.73 V、4.68 V,结构C相比结构A降低了3.5%;结构A、结构B和结构C的斜率效率(SE)分别为1.63、1.73、1.76,结构C相比于结构A提高了8%. 结构C相对来说拥有较低的阈值电流和阈值电压,以及较高的斜率效率和输出功率,说明结构C的电学特性最好.
高的电光转换效率可以极大降低器件的散热成本,实现器件的小型化和便携化[24]. 随着注入电流的增加,激光二极管的电光转换效率经过急剧升高后短暂稳定,再次升高最后逐渐趋于稳定. 如图8所示,结构A矩形空穴阻挡层DUV-LD电光转换效率稳定在36.3 %,结构B,V形空穴阻挡层DUV-LD电光转换效率稳定在37.4 %,由于结构C,W形空穴阻挡层DUV-LD的阈值电流和阈值电压较低,且有较高的输出功率,因此结构C的电光转换效率最高,最终稳定在37.6 %,说明在三种结构中,结构C的光学特性最好.
4 结 论
使用Crosslight软件对矩形、V形以及W形三种不同空穴阻挡层结构激光二极管的有效势垒高度、n型区空穴泄露浓度,有源区载流子浓度、辐射复合效率、阈值电流与阈值电压、输出功率、斜率效率以及电光转换效率进行仿真对比,结果表明,W形空穴阻挡层结构深紫外激光二极管的辐射复合率最高,达到1.758,阈值电流降低到31.17 mA,阈值电压降低到4.68 V,斜率效率提升到1.76,能够有效提升空穴势垒高度,降低电子势垒高度,阻挡空穴溢出,增加电子注入,降低n型区的空穴泄露,提高辐射复合速率,改善DUV-LD的性能.
参考文献
[1] Lin Y,Chen H S,Chen C H,et al.Research progress of deep ultraviolet light emitting diode and its application in sterilization[J].J.Xiamen Univ.:Nat.Sci.Ed.,2020,59:13 (in Chinese) [林岳,陈华山,陈灿和,等.深紫外发光二极管研究进展及其在杀菌消毒中的应用[J].厦门大学学报:自然科学版,2020,59:13]
[2] Yang C.Study on ultraviolet disinfection mechanism of drinking water based on bacterial activity and culturability[D].Tsinghua University,2019 (in Chinese) [杨超.基于细菌活性及可培养性的饮用水紫外线消毒机理研究[D].清华大学,2019]
[3] Mondal R K,Chatterjee V,Singh S,et al.Optimization of structure parameters for highly efficient AlGaN based deep ultraviolet light emitting diodes[J].Superlatt.Microst.,2017,112:339.
[4] Li W M,Chang X H.Discussion on the application of UVLED in the prevention and control of bacterial pollution in water purifiers [J].J.Appliance.Sci.Technol.,2020 (2):32 (in Chinese) [李文明,常小辉.UVLED在预防控制净水器细菌污染方面应用探讨[J].家电科技,2020 (2):32]
[5] Wang Y F,Mussaab I,et al.Improvement of radiative recombination rate in deep ultraviolet laser diodes with step-like quantum barrier and aluminum-content graded electron blocking layer[J].Chin.Phys.B,2020,29:017301.
[6] Yi X Y,Sun H Q,Li Z F,et al.[INVITED] Special AlGaN graded superlattice hole and electron blocking layers improved performance of AlGaN-based ultraviolet light-emitting diodes[J].Opt.Laser Technol.,2018,106:469.
[7] Liu S,Ye C,Cai X,et al.Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer[J].Appl.Phys.A,2016,122:1.
[8] Zhao H,Liu G,Zhang J,et al.Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes[J].J.Display Technol.,2013,9:212.
[9] Huang H H,Chu S Y,Kao P C,et al.Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer[J].J.Alloy.Comp.,2009,479:520.
[10] Velpula R T,Jain B,Lenka T R,et al.Polarization-engineered p-type electron-blocking-layer-free III-nitride deep-ultraviolet light-emitting diodes for enhanced carrier transport[J].J.Elect.Mater.,2022,51:838.
[11] Zhang C,Sun H Q,Li X N,et al.Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with double electron blocking layers[J].Chin.Phys.B,2016,25:028501.
[12] Xing Z Q,Zhou Y J,Liu Y H,et al.Reduction of electron leakage of AlGaN-based deep ultraviolet laser diodes using an inverse-trapezoidal electron blocking layer[J].Chin.Phys.Lett.,2020,37:027302.
[13] Wang Y,Wang M Z,Wei S Q,et al.Reducing electron leakage from deep ultraviolet laser diode by using inverted trapezoid rectangle electron blocking layer[J].J.At.Mol.Phys.,2021,38:114 (in Chinese) [王瑶,王梦真,魏士钦,等.利用倒梯矩形电子阻挡层降低深紫外激光二极管的电子泄露[J].原子与分子物理学报,2021,38:114]
[14] Xing Z Q,Zhou Y J,Chen X,et al.Increased radiative recombination of AlGaN-based deep ultraviolet laser diodes with convex quantum wells[J].Optoelectronics Lett.,2020,16:87.
[15] Zhang D Q,Li G B,Chen C S.Relationship between barrier height of single quantum well InGaN/GaN and LED photoelectric performance[J].Chin.J.Quant.Elect.,2014,31:107 (in Chinese) [张大庆,李国斌,陈长水.单量子阱InGaN/GaN势垒高度与LED光电性能关系研究[J].量子电子学报,2014,31:107]
[16] Li H,Kang J,Li P,et al.Enhanced performance of GaN based light-emitting diodes with a low temperature p-GaN hole injection layer[J].Appl.Phys.Lett.,2013,102:011105.
[17] Sharif M N,Khan M A,Wali Q,et al.Performance enhancement of AlGaN deep-ultraviolet laser diode using compositional Al-grading of Si-doped layers[J].Opt.Laser Technol.,2022,152:108156.
[18] Wang M Z,Wang Y,Wei S Q,et al.Performance optimization of AlGaN - based deep ultraviolet laser diodes with multiquantum barrier in double blocking layers[J].J.At.Mol.Phys.,2022,39:147 (in Chinese) [王梦真,王瑶,魏士钦,等.多量子势垒双阻挡层结构对AlGaN基深紫外激光二极管的性能优化[J].原子与分子物理学报,2022,39:147]
[19] Shih Y H,Chang J Y,Sheu J K,et al.Design of hole-blocking and electron-blocking layers in Al<sub>x</sub>Ga<sub>1-x</sub>N-based UV light-emitting diodes[J].IEEE Trans.Electron Devices.,2016,63:1141.
[20] Zhang Y,Lv Q,Zheng C,et al.Recombination pathways and hole leakage behavior in InGaN/GaN multiple quantum wells with V-shaped pits[J].Superlatt.Microst.,2019,136:106284.
[21] Prasad S,Mondal R K,Chatterjee V,et al.Double-side step-graded AlGaN electron blocking layer for nearly droop-free GaN-based blue LEDs[J].Superlatt.Microst.,2019,132:106167.
[22] Yit X,Sun H,Jie S,et al.High efficiency improvements in AlGaN-based ultraviolet light-emitting diodes with specially designed AlGaN superlattice hole and electron blocking layers[J].Superlatt.Microst.,2017,104:19.
[23] Singha C,Sen S,Das A,et al.GaN/AlN Multiple quantum wells grown by molecular beam epitaxy:effect of growth kinetics on radiative recombination efficiency[J].Thin Solid Films,2020,709:138216.
[24] Chong F,Wang J.Xiong C,et al.Optimum the Thickness of p-Waveguide Layer for High Conversion Eficiency Diode Lasers[J] Acta Opt Sin. ,2009,29:3419 (in Chinese) [崇锋,王俊,能聪,等.优化p型波导层厚度提高半导体激光器电光转换效率[J].光学学报,2009,29:3419]
上一篇:样品辐照电子源的研发
下一篇:光子太赫兹通信技术
下一篇:光子太赫兹通信技术
热门排行